首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   105篇
  国内免费   221篇
  2024年   1篇
  2023年   24篇
  2022年   24篇
  2021年   42篇
  2020年   28篇
  2019年   44篇
  2018年   39篇
  2017年   31篇
  2016年   41篇
  2015年   42篇
  2014年   43篇
  2013年   72篇
  2012年   42篇
  2011年   38篇
  2010年   34篇
  2009年   48篇
  2008年   58篇
  2007年   48篇
  2006年   52篇
  2005年   73篇
  2004年   50篇
  2003年   40篇
  2002年   50篇
  2001年   43篇
  2000年   44篇
  1999年   40篇
  1998年   32篇
  1997年   25篇
  1996年   29篇
  1995年   24篇
  1994年   18篇
  1993年   24篇
  1992年   13篇
  1991年   6篇
  1990年   11篇
  1989年   13篇
  1988年   10篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1958年   1篇
排序方式: 共有1320条查询结果,搜索用时 31 毫秒
61.
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin‐signalling pathways in modulating plant–microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter‐species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant–microbe interactions.  相似文献   
62.
The arbuscular mycorrhizal (AM) symbiosis is widespread throughout the plant kingdom and important for plant nutrition and ecosystem functioning. Nonetheless, most terrestrial ecosystems also contain a considerable number of non‐mycorrhizal plants. The interaction of such non‐host plants with AM fungi (AMF) is still poorly understood. Here, in three complementary experiments, we investigated whether the non‐mycorrhizal plant Arabidopsis thaliana, the model organism for plant molecular biology and genetics, interacts with AMF. We grew A. thaliana alone or together with a mycorrhizal host species (either Trifolium pratense or Lolium multiflorum) in the presence or absence of the AMF Rhizophagus irregularis. Plants were grown in a dual‐compartment system with a hyphal mesh separating roots of A. thaliana from roots of the host species, avoiding direct root competition. The host plants in the system ensured the presence of an active AM fungal network. AM fungal networks caused growth depressions in A. thaliana of more than 50% which were not observed in the absence of host plants. Microscopy analyses revealed that R. irregularis supported by a host plant was capable of infecting A. thaliana root tissues (up to 43% of root length colonized), but no arbuscules were observed. The results reveal high susceptibility of A. thaliana to R. irregularis, suggesting that A. thaliana is a suitable model plant to study non‐host/AMF interactions and the biological basis of AM incompatibility.  相似文献   
63.
64.
AM真菌在植物病虫害生物防治中的作用机制   总被引:12,自引:0,他引:12  
罗巧玉  王晓娟  李媛媛  林双双  孙莉  王强  王茜  金樑 《生态学报》2013,33(19):5997-6005
丛枝菌根(Arbuscular Mycorrhizae,AM)真菌是一类广泛分布于土壤生态系统中的有益微生物,能与大约80%的陆生高等植物形成共生体。由土传病原物侵染引起的土传病害被植物病理学界认定为最难防治的病害之一。研究表明,AM真菌能够拮抗由真菌、线虫、细菌等病原体引起的土传性植物病害,诱导宿主植物增强对病虫害的耐/抗病性。当前,利用AM真菌开展病虫害的生物防治已经引起生态学家和植物病理学家的广泛关注。基于此,围绕AM真菌在植物病虫害生物防治中的最新研究进展,从AM真菌改变植物根系形态结构、调节次生代谢产物的合成、改善植物根际微环境、与病原微生物直接竞争入侵位点和营养分配、诱导植株体内抗病防御体系的形成等角度,探究AM真菌在植物病虫害防治中的作用机理,以期为利用AM真菌开展植物病虫害的生物防治提供理论依据,并对本领域未来的发展方向和应用前景进行展望。  相似文献   
65.
在温室盆栽条件下,研究丛枝菌根(AM)真菌地表球囊霉(Glomus versiforme)对连作土壤中西瓜自根苗和嫁接苗生长、根系膜透性、丙二醛(MDA)含量和防御性酶活性的影响.结果表明: 接种AM真菌能显著增加西瓜自根苗和嫁接苗的生物量,提高根系活力,降低根系膜透性和MDA含量.接种AM真菌的自根苗地上部鲜质量、地上部干质量和根系活力分别增加了57.6%、60.0%和142.1%,而接种AM真菌的嫁接苗分别增加了26.7%、28.0%和11.0%;自根苗(C)、嫁接苗(G)、接种AM真菌自根苗(C+M)和接种AM真菌嫁接苗(G+M)的根系细胞膜透性为C>G>C+M>G+M,根系MDA含量为C>G>G+M>C+M.接种AM真菌能提高西瓜自根苗和嫁接苗根系的苯丙氨酸解氨酶(PAL)、过氧化氢酶(CAT)、过氧化物酶(POD)、几丁质酶和β 1,3 葡聚糖酶活性,而且接种AM真菌的西瓜自根苗和嫁接苗根系POD、PAL和β-1,3-葡聚糖酶活性的峰值比不接种的提前2周出现.接种AM真菌能激活西瓜自根苗和嫁接苗与抗逆性有关的防御性酶反应,使根系对逆境产生快速反应,从而提高其抗连作障碍的能力.  相似文献   
66.
《植物生态学报》2013,37(11):1028
该试验以根内球囊霉(Glomus intraradices)和地表球囊霉(G. versiforme)为接种剂, 研究了丛枝菌根真菌对刺槐(Robinia pseudoacacia)生物量、热值、含碳量、灰分、能量积累和碳素积累的影响。结果表明, 接种根内球囊霉和地表球囊霉对提高刺槐生物量、热值、能量积累和碳素积累都起到了重要作用。接种根内球囊霉和地表球囊霉后刺槐的总生物量比对照分别增加了89.61%和91.34%, 能量积累分别比对照增加102.20%和94.19%, 碳素积累分别比对照增加93.30%和77.21%; 同时发现刺槐的能量和碳主要分布在根系和叶, 而茎中能量和碳所占的比例较小。接种根内球囊霉提高了刺槐的干重热值, 其根、茎、叶的干重热值分别比对照增加7.72%、8.94%和8.41%; 接种地表球囊霉也显著(p < 0.05)提高了刺槐的干重热值, 但其效果低于根内球囊霉。接种根内球囊霉显著(p < 0.05)提高了刺槐根的含碳量, 对茎和叶的含碳量影响不明显。接种根内球囊霉和地表球囊霉都显著(p < 0.05)提高了刺槐茎和叶的去灰分热值。  相似文献   
67.
丛枝菌根真菌伴生细菌的研究进展   总被引:3,自引:0,他引:3  
龙良鲲  姚青  艾云灿  朱红惠 《生态学报》2007,27(12):5345-5351
在丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)的孢子、菌丝的表面或内部栖息着细菌,称之为AMF伴生细菌。AMF伴生细菌种类多样、分布广泛,生态位点包括孢子壁的表面或内部、细胞质、菌丝、孢子果等。其可能的生物学意义包括影响AMF孢子萌发、菌丝生长、菌根形成等过程。由于伴生细菌与AMF联系紧密,其对AMF和土壤微生物生态学具有重要的意义。国际上在该领域的研究已有30多年的历史,就其研究进展进行综述。  相似文献   
68.
以疏叶骆驼刺为研究对象,设定3个水分梯度正常水分(土壤相对含水量(70±5)%)、干旱胁迫(土壤相对含水量(20±5)%)和复水处理(干旱胁迫60天后恢复至正常水分)与四组接种处理(单接种丛枝菌根真菌(AMF)、单接种根瘤菌、双接种AMF+根瘤菌和不接种),分析不同水分条件下双接种丛枝菌根真菌和根瘤菌对疏叶骆驼刺的生长以及供、受体疏叶骆驼刺之间氮素转移的影响。结果表明,正常水分处理时,双接种疏叶骆驼刺的AMF侵染率、地上生物量、地下生物量、总生物量以及氮含量均要高于单接种处理;根瘤数量、最大荧光(Fm)、初始荧光(Fo)、最大光化学效率(Fv/Fm)与单接种处理之间无差异;在遭遇干旱胁迫时,双接种疏叶骆驼刺的AMF侵染率、总生物量、Fv/Fm均小于单接种处理;地上生物量、地下生物量、根瘤数、FmFo以及氮含量与单接种之间无差异。复水后,双接种疏叶骆驼刺的地上生物量、地下生物量、总生物量、根瘤数均优于单接种;AMF侵染率、氮含量低于单接种;FmFoFv/Fm均与单接种之间无差异。在氮素转移方面,正常水分时,双接种与单接种的氮素转移率无差异,在遭遇干旱胁迫时,双接种疏叶骆驼刺的氮素转移率显著降低,即使复水后,仍得不到恢复。可见,与单接种AMF或单接种根瘤菌相比,双接种AMF和根瘤菌在正常水分时更具有优势,干旱胁迫会导致AMF和根瘤菌协同促生优势的减弱,复水后双接种疏叶骆驼刺能及早的对水分变化做出响应,对其生长具有一定的补偿作用,但仍不能抵消干旱胁迫所带来的损伤。丛枝菌根网络促进氮素转移一定程度上提高了疏叶骆驼刺幼苗耐旱性,但是在干旱条件下双接种疏叶骆驼刺的氮素转移率要低于单接种AMF,复水后仍得不到恢复。  相似文献   
69.
丛枝菌根(arbuscular mycorrhizal, AM)真菌是一类能够与绝大多数陆地植物形成共生关系的土壤真菌, 其根外菌丝可以侵染不同植物根系且可以进行菌丝融合, 从而形成丛枝菌根网络(arbuscular mycorrhizal networks, AMNs)。AMNs可以在植物之间转运水分及营养元素如碳(C)、氮(N)、磷(P)等, 最近研究表明AMNs还可以在植物遭受环境胁迫时向邻近植物传递防御信号, 对周围植物起到“预警”作用。目前, 关于环境胁迫条件下AMNs介导的信号物质传递研究仍处于起步阶段, 许多问题亟待回答。该文首先回顾了目前有关AMNs介导的信号物质传递研究进展, 继而梳理了这一研究领域值得进一步探究的科学问题, 包括AMNs在植物间传递防御信号的可能途径及相关机制, AMNs介导的信号传递对菌根共生体系的可能影响, 以及AMNs研究中常用的技术及其发展, 最后讨论了AMNs介导的信号物质传递在作物保护等方面的可能应用。  相似文献   
70.
香柱菌属Epichloë内生真菌存在于宿主植物地上部组织,不仅能提高宿主植物对生物与非生物逆境的抗性,而且能对周围环境中的微生物产生影响。该研究以染内生菌(endophyte-infected,EI)和不染菌(endophyte-free,EF)苇状羊茅Festuca arundinacea为实验材料,探究内生真菌和不同水平盐碱胁迫处理对宿主根系丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落多样性和组成的影响。结果表明,内生真菌和盐碱胁迫处理对苇状羊茅根系AMF多样性影响存在交互作用。EF苇状羊茅根系AMF多样性随盐碱胁迫处理水平的增加而降低,内生真菌的存在缓解了这一效应,在200和400 mmol/L盐碱胁迫处理下,内生真菌感染增加了苇状羊茅根系AMF多样性;此外,内生真菌感染改变了苇状羊茅根系AMF群落组成,降低了优势属Funneliformis相对多度,增加了ClaroideoglomusGlomus和unclassified AMF相对多度。结构方程模型结果表明,内生真菌通过间接增加土壤总磷浓度对苇状羊茅根系AMF多样性产生影响。本研究为筛选盐碱污染区生态修复的植物-微生物共生体提供基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号